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Abstract

In many observational studies the treatment may not be binary or categori-
cal, but rather continuous in nature, so focus is on estimating a continuous
dose-response function. In this paper we propose a set of Stata programs
to semiparametrically estimate the dose-response function of a continuous
treatment, under the key assumption that adjusting for pre-treatment variables
removes all biases (uncounfoundedness). We focus on kernel methods and
penalized spline models, and use generalized propensity score methods under
continuous treatment regimes for covariate adjustment. Several alternative
parametric assumptions on the functional form of the generalized propensity
score are implemented in our Stata programs, which also allow users to im-
pose a common support condition and evaluate the balancing of the covariates
using various approaches. We illustrate our routines by estimating the effect
of the prize amount on subsequent labor earnings for Massachusetts lottery
winners, using a data set collected by Imbens et al. (2001).

Keywords: dose-response function, generalized propensity score, kernel esti-
mator, penalized spline estimator, weak unconfoundedness

JEL classification codes: C13 ;J31 ;J70



1 Introduction

The evaluation process in the fields of economics, sociology, law, and many other areas gener-
ally relies on the implementation of non-experimental techniques to estimate average treatment
effects. Propensity score methods (Rosenbaum and Rubin, 1983) are attractive empirical tools
to balance the distribution of covariates between treatment groups, and analyze the compara-
bility of the groups in terms of observed covariates. Under the key assumption of unconfound-
edness, which requires that potential outcomes are independent of the treatment conditional
on the observed covariates, propensity score methods eliminate or reduce the potential bias in
treatment effect estimates in observational studies. The majority of applications aim at evalu-
ating causal effects of a binary treatment. However, in many empirical studies, treatments may
take on many values, implying that participants in the study may receive different treatment
levels. In such cases, the focus is on assessing the heterogeneity of treatment effects arising
from variation in the amount of treatment exposure, that is, on estimating a dose-response

function (DRF).

Over the last years, propensity score methods have been generalized and applied to the case
of multivalued treatments (e.g., Imbens, 2000; Lechner, 2001) and, more recently, continuous
treatments and arbitrary treatment regimes (e.g., Hirano and Imbens, 2004; Imai and VanDyk,

2004; Flores et al., 2012; Bia and Mattei, 2012; Kluve et al., 2012).

In this paper we build on the work by Hirano and Imbens (2004), who introduced the
concept of the Generalized Propensity Score (GPS) and employed it to estimate the entire DRF
of a continuous treatment. Hirano and Imbens (2004) used a parametric partial mean approach
to estimate the DRF. Here we focus on semiparametric techniques. Specifically, we develop
a set of Stata programs which allow users to (i) estimate the GPS under various alternative
parametric assumptions; (77) impose the common support condition as defined in Flores et al.
(2012) and assess the balance of covariates after adjusting for the estimated GPS; (i) estimate
the DRF using the estimated GPS by employing either the nonparametric inverse-weighting
(IW) estimator developed in Flores et al. (2012), or a new set of semiparametric estimators

based on penalized spline techniques.

We illustrate these programs using a data set collected by Imbens et al. (2001). The

winners of the Megabucks lottery in Massachusetts in the mid-1980’s represent the reference



population. We implement our programs to semiparametrically estimate the average potential
post-winning labor earnings for each amount of the lottery prize (DRF). The assignment of
the prize is obviously random, but unit nonresponse led to a self-selected sample where the
amount of the prize received is no longer independent of background characteristics. As in the
binary treatment case, the extent to which the bias generated by confounding factors is reduced

heavily depends on the richness of the pre-treatment variables available in the empirical study.

The paper is organized as follows. Section 2 describes the methodological approach we
refer to in the analysis. Section 3 introduces the generalized propensity score model and
the semiparametric estimators of the DRF, and Section 4 shows the syntax of the DRF . ado.
Section 6 illustrates the methods and the Stata program discussed in the paper using a survey

of Massachusetts lottery winners (Imbens et al., 2001).

2 Description

We estimate a continuous DRF that relates each value of the dose (e.g., lottery prize level) to
the outcome variable (e.g., post-winning labor earnings) within the potential outcome approach
to causal inference (Rubin, 1974; Rubin, 1978). Formally, consider a set of N individuals, and
denote each of them by subscript i: ¢+ = 1,...,N. Under the stable unit treatment value
assumption (SUTVA (Rubin, 1980; Rubin, 1990)), for each unit ¢ there is a set of potential
outcomes {Y;(t)}+c7, where T is a subset of the real line, 7 C R. We are interested in

estimating the average DRF, u(t) = E[Y;(t)].

For each individual i, we observe a vector of pre-treatment covariates, X;, the received
treatment level, 7;, and the corresponding value of the outcome for this treatment level, Y; =
Y,(T3).

The central assumption of our approach is that the assignment to treatment levels is weakly
unconfounded given the set of observable variables, i.e., Y;(¢) L T;|X; for all t € T (Hirano
and Imbens, 2004). This assumption is described as weak unconfoundedness because it only
requires conditional independence for each potential outcome Y;(t), rather than joint indepen-

dence of all potential outcomes.

Under weak unconfoundedness, we can apply the techniques based on the GPS with

continuous treatments introduced by Hirano and Imbens (2004). Let »(t,x) = frx(t|z)



be the conditional density of the treatment given the covariates. The GPS is defined as
R; = r(T;, X;). The GPS is a balancing score (e.g., Rosenbaum and Rubin, 1983), that is,
within strata with the same value of r(t, z), the probability that T = ¢ does not depend on
the value of X. The weak unconfoundedness assumption, combined with the balancing score
property, implies that assignment to treatment is weakly unconfounded given the GPS. For-

mally,
fr (tr(t, X2), Yi(t) = fr(tr(t, Xi)) -

for every t € T, Theorem 1.2.2 in Hirano and Imbens (2004). Thus, any bias associated
with differences in the distribution of covariates across groups with different treatment lev-
els can be removed using the GPS. Formally, Hirano and Imbens (2004) show that if the
assignment to the treatment is weakly unconfounded given pre-treatment variables X;, then

pu(t) = E[B(t,r(t, Xi))], where (t,r) = E[Yi(t)|r(t, Xi) = r] = E[Yi|T; = t, R; = r]

3 Inference

We employ two-step semiparametric estimators of the DRF. The first step involves parametri-
cally modelling and estimating the GPS, R(T;, X;), and assessing the common support condi-
tion and the balancing of covariates property. The second step consists of estimating the DRF,
(), using either the nonparametric IW kernel estimator proposed by Flores et al., (2012) or a
semiparametric spline-based estimator. These two steps are implemented in the Stata routine

DRF . ado, which is described here in detail.

3.1 Estimation of the Generalized Propensity Score

The first part of the DRF . ado program computes the GPS, allows users to impose an overlap

condition, and tests the balancing property of the GPS.

The GPS is estimated parametrically under various alternative distributional assumptions.

Specifically, we assume that
9(Ti| X;) ~ 1 (h(7, X;),0) (1

where ¢() is a link function, 1) is a probability density function (pdf), h() is a flexible function
of the covariates depending on an unknown parameter vector v, and 6 is a scale parameter.

In the DRF . ado program we consider the Normal, Inverse Gaussian, and Gamma distribu-



tions; using the identity function, the logarithm, and the power function as link functions. A
two-parameter Beta distribution is also implemented to address evaluation problems where the
treatment variable takes on values in the interval (0, 1), representing, for instance, a propor-
tion. Maximum likelihood methods are employed to fit these models, using the official Stata

command glm or using the user-written package betafit (Buis et al., 2012)".

Let R; be the estimated GPS. An important issue in GPS applications is determining the
“common support” or “overlap region". The DRF . ado program allows users to do this using
the approach proposed by Flores et al., (2012). Specifically, the sample is first divided into K
groups according to the distribution of the treatment, cutting at the 100 k/Kth,k =1,... K—
1 percentile of the treatment empirical distribution. Let (); be the percentile unit ¢ belongs to.
For each percentile gy, let ]%f be the GPS evaluated at the median level of the treatment in that
percentile for unit ¢, which is calculated for all units. The common support region with respect
to percentile ¢ is obtained by comparing the support of the distribution of Z:Ef for those units
with (); = ¢y to that of units with ); # ¢,. Finally, the sample is restricted to units who are
comparable across all the K groups simultaneously, dropping participants whose GPS is not
among the common support region for all /& groups. Formally:

K
CS = ﬂ{z Rl e [max{mmj:Qj:qli’?,mmj;QﬁéqR?}, min{maxj:Qj:qR?, maxj:Qﬁgqf%?}]}
g=1

Similarly to applications of standard propensity score methods, in GPS applications it is
crucial to evaluate how well the estimated GPS works in balancing the covariates. Several
methods can be applied to test the balancing properties of the GPS. In the DRF . ado command,
two approaches are implemented: the ‘blocking on the GPS’ approach and an approach based
on a likelihood ratio (LR) test. The ‘blocking on the GPS’ approach was proposed by Hirano
and Imbens (2004), and it is implemented in the DRF . ado routine using two-sided ¢-test or
Bayes Factor statistics (see also Bia and Mattei, 2008). The second approach was proposed
by Flores et al. (2012), who suggested to compare an unrestricted model for 7; including all
covariates plus the GPS (up to a cubic term), with a restricted model that sets the coefficients
of all covariates to zero, using a LR test. If the GPS sufficiently balances the covariates, then

they should have little explanatory power conditional on the GPS.?

'betafit (version 1.0.0 at time of writing) is available from the Statistical Software Components archive
(or -findit bet afit-) and must be installed separately from DRF.
2An alternative approach, which is not implemented in our Stata program, was proposed by Kluve et al.
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3.2 Estimation of the Dose-Response Function

In the second stage of the DRF . ado program, we estimate the DRF by applying spline and
kernel techniques. We first describe the spline estimator and then we move to the IW kernel

estimator.

As in Hirano and Imbens (2004), we employ a partial mean approach (Newey, 1994) when
spline techniques are considered. Specifically, we first estimate the conditional expectation of
the observed outcome Y; given the treatment actually received, 7;, and the GPS estimated in
the first stage, }3%, using bivariate penalized spline smoothing based on additive spline bases,
tensor products of spline bases, or radial basis functions (Ruppert et al., 2003). Mixed models
provide a representation of the penalized splines that allows smoothing to be done using mixed
model methodologies and software. In our routine, we use the Stata routine xtmixed to fit
penalized spline regressions. The average dose-response function at ¢ is estimated by averaging
the estimated regression function over the estimated score function evaluated at the specific

treatment level ¢, i.e., R = 7(t, X;).

The simplest bivariate penalized spline smoothing relies on additive spline bases, which

can be formally defined in our setting as follows:

Kt KT
E(Y;|T;, B;) = ag+ /Ty + a, R+ > u (T — k) + Y up(Ri—kp)y ()
k=1 k=1

where for any number z, z, is equal to z if z is positive and is equal to O otherwise, and
ki< ...<kb.and k) < ... <k}, are K" and K" distinct knots in the support of 7" and the

support of the estimated GPS, }3%, respectively.

The additive models have many attractive features, including their simplicity. However,
an additive model may not provide a satisfactory fit, so nonadditive models including inter-
action terms are required. To this end, we consider tensor product bases, which are obtained

by forming all pairwise products of the basis functions 1,7, (T; — kt) ..., (T; — k%.) and

(2012). It consists of regressing each covariate on the treatment variable and comparing the significance of the
coefficients for specifications with and without conditioning on the GPS.



1,R;, (R, — k%) ..., (R; — ki.). Formally,

EY;|T;, B;) = ao + a,T; + a, R; + XTI} R+

Kt K" K" Kt

S U (T — k) + D up(Ri — ks + Y hR(T — ko + Y 0k Ti(R; — kp)4 +

k=1 k=1 k=1 k=1

Z Z Vi (Th = ki)« (Ri — k)4 (3)

k=1 k'=1
Note that estimation problems may arise when the tensor product approach is applied,
especially if the sample size is relatively small. When these problems arise, the DRF . ado

alerts users suggesting them to adopt an additive model instead.

An alternative to tensor product splines is given by the so-called radial basis functions,
which are basis functions of the form C(||(¢,7)" — (k, k")’||) for some univariate function C'.

Here we consider the following function
2

t Kt t Kt t Kt
C — = — log —
r k" r k" r k"
where || - || is the Euclidean norm, and we assume that
K t
A AN A 7—; kk:
E(Yi|T}, R)) = ao + a, Ty + a, Ry + AT,R; + Y _u,C ] -
k=1 R; k;,
where uq, - - - , u are random variables with mean 0, and Varla_nce covariance matrix C'ov(u
11 kp, kL,
o2(2,2)(Q, %), with Q, = |C —
k. ks
Ji<k <k

Given the estimated parameters of the regression function (2), (3) or (4), the average po-

tential outcome at treatment level ¢ is estimated by averaging over }Aif

Flores et al. (2012) proposed to estimate the DRF using a nonparametric Inverse-Weighting
(IW) estimator based on kernel methods. In this approach, the estimated scores are used to
weight observations to adjust for covariate differences. Let K (u) be a kernel function with the
usual properties and let /& be a bandwidth satisfying h — 0 and Nh — oo as N — oo. The
IW approach is implemented using a local linear regression of Y on 7" with weighted kernel
function K, x (T;—t) = K,(T;—t)/R!, where K,(z) = h™'K(z/h). Formally, the IW Kernel

Estimator of the average DRF is defined as follows:

7 Do(t)Sa(t) — Di(t)S1()
EY ) = =g 05,0 — 520
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where S;(t) = Y, Kyx (T — t)(T; — t)7 and D;(t) = S8, Kix (T; — t)(T; — t)Y;, j =
0,1,2.

We implement the IW estimator using a normal kernel. By default, the global bandwidth
is selected using the procedure proposed by Fan and Gijbels (1996), which is based on esti-
mating the unknown terms appearing in the optimal global bandwidth by employing a global
polynomial of order p plus 3, where p is the order of the local polynomial fitted. However,

users can also arbitrary choose an alternative global bandwidth.

4 Syntax

DRF varlist [weight] [lf] [ln] , outcome (varname) treatment (varname) gpscore (newvar)
cutpoints (varname) index (string) ng_gps (#) method (type) [family(familyname)
link (linkname) wvce (string) common (#) numoverlap (#) test_varlist (varlist)
test (type) flag (#) tpoints (vector) npoints (#) npercentiles (#) detail
delta (#) bandwidth (#) degreel (#) degree2 (#) nknotsl (#) nknots2 (#)
knotsl (#) knots2 (#) additive nknots (#) knots (#) standardized
estopts (string) det ]

Note that, in the command DRF . ado, the argument varlist represents the observed pre-

treatment variables, which are used to estimate the generalized propensity score.

S Options
5.1 Compulsory Options

I/ outcome (varname) specifies that varname is the outcome variable.
treatment (varname) specifies that varname is the treatment variable.

gpscore (newvar) asks users to specify the variable name for the estimated general-

ized propensity score.

method (type) specifies the type of approach to be used in estimating the dose-response
function. The implemented approaches are bivariate penalized splines (type = mtspline),

bivariate penalized radial splines (type = radialpspline) or IW kernel (type = iwkernel).?

3The subroutines mtpspline and radialpspline are respectively called when estimators based on
penalized splines (type = mtspline) and penalized radial splines (type = radialpspline) are used.



cutpoints (varname) divides the range or set of the possible treatment values, Y,
into intervals within which the balancing properties of the GPS are checked using a
‘blocking on the GPS’ approach. varname is a variable indicating to which interval

each observation belongs to. If flag is set to 0 (see below), this option is not compulsory.

index (string) specifies the representative point of the treatment variable at which the
GPS has to be evaluated within each treatment interval specified in cutpoints (varname) .
The argument string identifies either the mean (string = mean) or a percentile (string
=pl,..., pl00) of the treatment. This is used when checking the balancing properties
of the GPS employing a ‘blocking on the GPS’ approach, where the blocking is done
using the GPS evaluated at the representative point index (string) . If flag is set to 0

(see below), this option is not compulsory.

ng_gps (#) specifies that, for each treatment interval defined in cutpoints (varname) ,
the values of the GPS evaluated at the representative point index (string) have to be
divided into # (# € {1,...,100}) intervals, defined by the quantiles of the GPS evalu-
ated at the representative point index (string) . This is used when setting the balancing
properties of the GPS employing a ‘blocking on the GPS’ approach. If flag is set to 0

(see below), this option is not compulsory

5.2 Uncompulsory Options

I/ Global Options
a) GPS Estimation Options

family (familyname) specifies the distribution used to estimate the General-

ized Propensity Score. The available distributional families are Gaussian (normal)
(family (gaussian)), Inverse Gaussian (family (igaussian) ), Gamma
(family (gamma) ), and Beta (family (beta) ). The defaultis family (gaussian).
The Gaussian, Inverse Gaussian and Gamma distributional families are fitted using

glm, the Beta distribution is fitted using bet afit. The following two options are

for the g1lm command, so they can be only specified when the Gaussian, Inverse
Gaussian or Gamma distribution is assumed for the treatment variable.

link (linkname) specifies the link function for the Gaussian, Inverse Gaussian

and Gamma distributional families. The available links are 1ink (identity),

9



link (log) and 1ink (pow), and the default is the canonical link for the family ()

specified (see help for g1lm for further details).

vce (veetype) specifies the type of standard error reported for the GPS estimation,
when the Gaussian, Inverse Gaussian or Gamma distribution is assumed for the
treatment variable. vcefype may be oim, robust, cluster, clustvar, eim,
opg, bootstrap, jackknife, hac, kernel, jackknifel (see help for
glm for further details).

b) Overlap Options

common (#) is a flag (# € {0, 1}), which restricts the inference to the subsample

satisfying the common support condition when it is switched on (#= 1). The

default value is 1.

numoverlap (#) specifies that the common support condition is imposed by di-
viding the sample into # groups according to # quantiles of the treatment distribu-
tion. By default the sample is divided into five groups, cutting at the 20th, 40th,

60th and 80th percentiles of the distribution if common (1) .
c¢) Balancing Property Assessment Options

test_varlist (varlist) specifies that the balancing property has to be assessed
for each variable in varlist. The default test_varlist consists of all the variables

used to estimate the generalized propensity score.

test (type) allows users to specify whether the balancing property is to be as-
sessed using a ‘blocking on the GPS’ approach, based on either standard two-sided
t-tests (test (f_test) ) or Bayes-factors (test (Bayes_factor) ), and/or a model
comparison approach based on a likelihood ratio (LR) test (test (L_like) ).

The ‘blocking on the GPS’ approach, based on standard two-sided ¢-tests, provides
the values of the test statistics before and after adjusting for the GPS for each pre-
treatment variable included in test_varlist (varlist) and for each pre-fixed
treatment interval specified in cutpoints. Specifically, let p be the number of
control variables in test_wvarlist (varlist), and let X be the number of treat-
ment intervals specified in cutpoints (varname) . Then, the program calculates
and shows px K values of the test statistic before and after adjusting for the GPS,

where the adjustment is done by dividing (or blocking) the values of the GPS eval-
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uated at the representative point 1ndex (string) into the number of intervals spec-
ified in ng_gps (#) . See Hirano and Imbens (2004) for further details.

The model comparison approach uses a likelihood ratio test to compare an unre-
stricted model for 7; including all the covariates plus the GPS (up to a cubic term),
with a restricted model that sets the coefficients of all covariates to 0. By default,
both the ‘blocking on the GPS’ approach and the model comparison approach are
applied.

flag (#) allows the user to specify that DRF . ado estimates the GPS without per-
forming the balancing test. The default # is 1, meaning that the balancing property
must be assessed.

¢) DRF Options

tpoints (vector) indicates that the average potential outcome function or DRF
is to be estimated at each level of the treatment in vector. By default, the DRF . ado
creates a vector with jth element equal to the jth observed treatment value. This
option can not be used along with either the option npoints (#) ornpercentiles (#)

(see below).

npoints (#) indicates that the DRF is to be estimated at each level of the treat-
ment belonging to a set of evenly spaced values t, ?;, . . ., t4, that cover the range
of the observed treatment. This option can not be used along with either the option
tpoints (#) (see above) or npercentiles (#) (see below) .
npercentiles (#) indicates that the DRF is to be estimated at each level of the
treatment belonging to a set of evenly spaced number of quantiles t,0, 41, . . ., L%,
that cover the range of the observed treatment. This option can not be used along
with either the option tpoints (#) or npoints (#) (see above)

det displays more detailed output for the DRF estimation. When this option
is not specified, the program only displays the name of the chosen technique:
method (radialpspline) , method (mtpspline) , or method (iwkernel) ).
delta (#) specifies that DRF .ado also estimates the treatment effect function
p(t + #) — p(t). The default # is 0, meaning that DRF . ado only estimates the

dose-response function, ().

I/ Options for the IW Kernel estimator (iwkernel)

11



bandwith (#) specifies the bandwidth to be used. By default, the global band-
width is chosen using the automatic procedure described in Fan and Gijbels (1996).
This procedure is based on estimating the unknown terms appearing in the optimal
global bandwidth by employing a global polynomial of order p plus 3, where p is

the order of the local polynomial fitted.

III/ Options for the radial penalized spline estimator (radialpspline)

nknots (#) specifies the number # of knots to be selected in the two-dimensional
space of the treatment variable and the generalized propensity score. The default
choice of # is max (20, min(%, 150)) where n is the number of unique 73, R; (Rup-
pert et al., 2003). When this option is specified, the subroutines radialpspline
and spacefill (Bia and Van Kerm, 2013) are applied.* This option can not be
used along with the option knot s (numlist) (see below).

knots (numlist) specifies the list of knots for the treatment and the GPS variable.
This option can not be used along with the option nknot s (#) (see above).
standardized allows users to standardize the treatment variable and the gener-

alized propensity score before selecting the knots. The knots are defined based on

the standardized variable.

IV/ Options for the tensor-product penalized spline estimator (mtpspline)
degreel (#) specifies the power of the treatment variable included in the penal-
ized spline model. The default is degreel (1).
degree?2 (#) specifies the power of the generalized propensity score included in
the penalized spline model. The default is degree2 (1).
nknotsl (#) specifies the number (#) of knots for the treatment variable. The
location of the Kjth knot is defined as %th sample quantile of the unique 7;,
for k = 1,...,#. The default choice of # is max (5, min(%,35)), where n is the
number of unique 7; (Ruppert et al., 2003). This option can not be used along with
the option knot s1 (numlist) (see below).
nknots2 (#) specifies the number (#) of knots for the generalized propensity

score. The location of the K;th knot is defined as % th sample quantile of the

4spacefill (version 1.0.0 at time of writing) is available from the authors (or -findit spacefil1-) and
must be installed separately from DRF.
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unique R;, for & = 1,...,#. The default choice of # is max(5, min(%,35)),
where n is the number of unique R; (Ruppert et al., 2003). This option can not be

used along with the option knot s2 (numlist) (see below).

knots1 (numlist) specifies the list of knots for the treatment variable. This option

can not be used along with the option nknots1 (#) (see above).

knots2 (numlist) specifies the list of knots for the generalized propensity score.

This option can not be used along with the option nknots2 (#) (see above).

additive allows user to implement penalized splines based on the additive model,

without including the product terms.

V/ Mutual options for the tensor-product and radial penalized spline estimators

Mutual options for the tensor-product and radial penalized spline estimators in-
volve either the mtpspline subroutine or the radialpspline subroutine,

depending on which estimator is used.

estopts specifies all the possible options allowed when running the xtmixed

models to fit penalized spline models (see help for estopt s for further details).

6 Example: the Lottery Dataset

We illustrate the methods and the Stata program discussed in the previous sections by
re-analyzing data coming from a survey of Massachusetts lottery winners (see Imbens
et al. (2001) for details on the survey). The focus is on evaluating the effect of the prize
amount on future labor earnings (from social security records). This example is also

considered in Hirano and Imbens (2004).

The sample we use consists of 237 individuals who won a major prize in the lottery.
The outcome of interest is earnings six years after winning the lottery (“year6”), and
the treatment is the prize amount (“prize”). Pre-treatment variables are age, gender,
years of high school, years of college, winning year, number of tickets bought, working
status after winning, and earnings s years before winning the lottery, s = 1,2,...,6. To
avoid results driven by outliers, we drop observations belonging to the upper 5% of the

treatment variable distribution.

We estimate the DRF and the marginal treatment effect function, which represents the

13



marginal propensity to earn out of the yearly prize money, using the DRF routine. We
apply both penalized spline techniques and the IW kernel estimator, although details on
the output from running DRF are only shown for the radial penalized spline estimator
(method (radialpspline) ). First, the GPS model and summary statistics of the esti-
mated GPS are shown, and the common support is determined. The results show that 30
observations are dropped from the analysis after imposing the common support condi-
tion. Then, the balancing property is assessed. We specify the test (L_like) command
for the balancing test, so the model comparison approach, based on the likelihood ratio
(LR) test, is reported. The LR test shows that the GPS balances the covariates, since
they have little explanatory power conditional on the GPS. In particular, the restricted
model for 7; that excludes the covariates cannot be rejected at the usual significance
levels (p-value is 0.187), whereas the restricted model that excludes the GPS is soundly
rejected (p-value is 0). Finally, the DRF and the marginal treatment effect function are
estimated. Note that the option det is specified, so details on the estimation of the DRF

are shown.

Figures 1 and 2 show the dose-response functions and the marginal treatment effect
functions using three alternative estimators: IW Kernel, multivariate penalized spline,
radial penalized spline. Figures 3 and 4 show these functions along with pointwise 95%
confidence bands. The standard errors are computed calling the DRF program in the
bootstrap command.” Following Hirano and Imbens (2004), we report the value of
these functions at $10, 000 increments for all values between $10, 000 and $100, 000.

. use "Lottery/LotteryDataSet.dta", clear

. drop if year6=-.

(35 observations deleted)

. su prize, de
Treatment variable = Prize amount

Percentiles Smallest

1% 5.3558 1.139

5% 10.05 5
10% 11.246 5.3558 Obs 202
25% 17.034 6.844 Sum of Wgt. 202
50% 32.1835 Mean 57.36918
Largest Std. Dev. 64.84194

75% 71.642 270.1
90% 137.27 305.09 Variance 4204.477
95% 171.73 323.32 Skewness 2.821964
99% 305.09 484.79 Kurtosis 14.18278

. drop if prize >= r(p95)
(11 observations deleted)

>The boot st rap command can lead to slightly different “observed” estimates, when using the spline-based
models, due to a random selection of the knots values.
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replace year6 = year6/1000
year6 was long now double
(92 real changes made)

mat def tp = (10\20\30\40\50\60\70\80\90\100)
set more off
DRF agew ownhs owncoll male tixbot workthen yearml yearm2 yearm3 yearm4 yearmb yearmé6, ///
outcome (year6) treatment (prize) gpscore(gps) test(L_like) ///
tpoints (tp) numoverlap(3) method(radialpspline) family (gaussian) ///
link (log) nknots(7) det delta(l)
KAk hkhkhkhkhkhhkhhhkhkhkhkhkhkhA A A A A A Ak hkhkhkhkhkhkhkhkhkhkhkhkhkhk kA A Ak xx

Algorithm to estimate the generalized propensity score
R R I I R kR I R I I I i i

Estimation of the propensity score

Iteration O: log likelihood = -983.63224
Iteration 1: log likelihood = -958.61638
Iteration 2: log likelihood = -953.76331
Iteration 3: log likelihood = -953.73191
Iteration 4: log likelihood = -953.73189
Generalized linear models No. of obs = 191
Optimization : ML Residual df = 178
Scale parameter = 1365.58
Deviance = 243073.1517 (1/df) Deviance = 1365.58
Pearson = 243073.1517 (1/df) Pearson = 1365.58
Variance function: V(u) =1 [Gaussian]
Link function : g(u) = 1ln(u) [Log]
AIC = 10.12285
Log likelihood = -953.731889 BIC = 242138.2
OIM
prize Coef. Std. Err. z P>|z| [95% Conf. Interval]
agew .0158337 .0053884 2.94 0.003 .0052727 .0263947
ownhs .0585064 .0742126 0.79 0.430 -.0869476 .2039604
owncoll -.0108263 .0389408 -0.28 0.781 -.0871488 .0654962
male .361554 .1564085 2.31 0.021 .054999 .6681091
tixbot -.0174202 .0188308 -0.93 0.355 -.054328 .0194875
workthen .068044 .1819285 0.37 0.708 -.2885292 4246172
yearml -.0033454 .0102149 -0.33 0.743 -.0233662 .0166754
yearm?2 .0018299 .0151926 0.12 0.904 -.0279471 .0316069
yearm3 -.0190244 .0134829 -1.41 0.158 -.0454505 .0074016
yearm4 .0451296 .0194034 2.33 0.020 .0070996 .0831596
yearmb -.0094795 .014749¢6 -0.64 0.520 -.0383882 .0194293
yearmb6 -.0055688 .0084792 -0.66 0.511 -.0221876 .0110501
_cons 2.534394 .489911 5.17 0.000 1.574186 3.494602

Note: The common support condition is imposed

R R ki S I R I I I I R R R ki i

30 observations are dropped after imposing common support
khhkkhkhkhkkhhhkhhkhhhhhhhhkhhhhhhhhhhhhhk kb hhhhhdhrhkhkhkhkhhkhkhbhhhkhkhbhrkhkhkhkhkhkhx*k

gps

Percentiles Smallest

1% .0000774 .0000308

5% .0012373 .0000774
10% .003318 .0003464 Obs 161
25% .0076905 .0004499 Sum of Wgt. 161
50% .0092542 Mean .0081786
Largest Std. Dev. .0029689

75% .0103334 .0107928
90% .0107199 .010793 Variance 8.81le-06
95% .0107774 .0107953 Skewness -1.385411
99% .0107953 .0107956 Kurtosis 3.790638

R R I R R R R R I b b b i i i S S
End of the algorithm to estimate the gpscore
R R R I I S R kR Rk R ek kS
KAk hkkhkhkhkkhkhhkhhkkhhhkhhhhhkhhhhhkdhhhhhhkhhkhkhkhkhhkhhdhhhkhkhkh bk bk kb hhhkhk A hkrhkhkhkhkhkkx*k

Beginning of the assessment of the balancing property of the GPS

Kk hkhkhkhkhkhkhkhhkhhhkhkhkhkhkhkhkhk A A A rr vk hkhkhkhkhkhkhkhhhhhhkhk bk kb bk kA Ak rrrrhkhkhkhkhkkkkk
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KA Ak hkhkhkhkhkhkhkhkhkhkhk kA A A A A A A A A A A A Ak hkhkhkhkhkhkhkhkhkhk kA kA A A A A A A A Ak kK
Log-Likelihood test for Unrestricted and Restricted Model
BRI R b b Sk S I I R I I I ki

Kk kkkkkhkkhkkkhkkkkkkkkk
Unrestricted Model
kA hkkhkhkhkkhkhkkhkhkhkhhhkhkhkkk

Iteration O: log likelihood = -729.44776
Iteration 1: log likelihood = -707.12056
Iteration 2: log likelihood = -702.86233
Iteration 3: log likelihood = -702.85896
Iteration 4: log likelihood = -702.85896
Generalized linear models No. of obs 161
Optimization ML Residual df = 145
Scale parameter = 402.607
Deviance = 58378.00995 (1/df) Deviance = 402.607
Pearson = 58378.00995 (1/df) Pearson = 402.607
Variance function: V(u) = 1 [Gaussian]
Link function g(u) = 1ln(u) [Log]
AIC = 8.929925
Log likelihood = -702.8589642 BIC = 57641.21
OIM
prize Coef. Std. Err. z P>|z| [95% Conf. Interval]
gps -220.8653 104.513 -2.11 0.035 -425.707 -16.02369
__0000G9 -30660.92 23793.14 -1.29 0.198 -77294.61 15972.77
__0000GA 3475308 1464036 2.37 0.018 605850.8 6344765
agew .0084917 .0037021 2.29 0.022 .0012357 .0157477
ownhs .0003809 .0351644 0.01 0.991 -.0685401 .0693019
owncoll .0279188 .0293008 0.95 0.341 -.0295097 .0853473
male -.0500428 .0975023 -0.51 0.608 -.2411438 .1410582
tixbot -.013928 .0112878 -1.23 0.217 -.0360518 .0081957
workthen -.0463551 .1273178 -0.36 0.716 -.2958933 .2031832
yearml .0059355 .0082222 0.72 0.470 -.0101797 .0220506
yearm2 -.0126701 .0127231 -1.00 0.319 -.037607 .0122668
yearm3 .026964 .0152109 1.77 0.076 -.0028488 .0567768
yearmé -.0053107 .0110529 -0.48 0.631 -.026974 .0163526
yearmb -.0121311 .0125158 -0.97 0.332 -.0366618 .0123995
yearmé .0013759 .0074775 0.18 0.854 -.0132798 .0160316
_cons 4.789697 .2886318 16.59 0.000 4.223989 5.355404
KAk hkhhkkhhhkhhdhhhkhhkdhhhkhkhkkhhhkhrdrhkhhkhkhhkhkrkhhkhkhrdhhhhkhkhxkhx*k
Restricted Model: where the variables are excluded
KAk Ak hkhkhkhkhhhkhkhkhkhkhkhA A A A A A A A A A A A A Ak hkhkhkhkhkhkhkhkhkhkhkhk A kA Ak
Iteration O: log likelihood = -729.67192
Iteration 1: log likelihood = -713.08728
Iteration 2: log likelihood = -710.90557
Iteration 3: log likelihood = -710.90514
Iteration 4: log likelihood = -710.90514
Generalized linear models No. of obs 16l
Optimization ML Residual df = 157
Scale parameter = 410.9211
Deviance = 64514.61459 (1/df) Deviance = 410.9211
Pearson = 64514.61459 (1/df) Pearson = 410.9211
Variance function: V(u) = 1 [Gaussian]
Link function g(u) = 1ln(u) [Log]
AIC = 8.880809
Log likelihood = -710.9051408 BIC = 63716.83
OIM
prize Coef. std. Err. z P>|z| [95% Conf. Intervall]
gps -132.0542 84.23995 -1.57 0.117 -297.1615 33.05306
__0000GY -44893.96 20771.74 -2.16 0.031 -85605.83 -4182.096
___0000GA 4098231 1330420 3.08 0.002 1490655 6705807
_cons 5.059741 .0710639 71.20 0.000 4.920458 5.199024
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LR I kR R I I I I S S S S I S

where the GPS terms are excluded
R R R R R I I I I I I I I e i I I I I b b I i

Restricted Model:

Iteration O: log likelihood = -831.02695
Iteration 1: log likelihood = -805.81266
Iteration 2: log likelihood = -800.34889
Iteration 3: log likelihood = -800.33044
Iteration 4: log likelihood = -800.33042
Generalized linear models No. of obs 16l
Optimization ML Residual df = 148
Scale parameter = 1323.861
Deviance = 195931.4489 (1/df) Deviance = 1323.861
Pearson = 195931.4489 (1/df) Pearson = 1323.861
Variance function: V(u) =1 [Gaussian]
Link function g(u) = 1ln(u) [Log]
AIC = 10.10348
Log likelihood = -800.3304227 BIC = 195179.4
OIM
prize Coef. Std. Err. z P>|z| [95% Conf. Interval]
agew .0190611 .0079541 2.40 0.017 .0034713 .034651
ownhs .0405098 .0891411 0.45 0.650 -.1342035 .2152231
owncoll .0224632 .0477538 0.47 0.638 -.0711326 .116059
male .3512001 .1678599 2.09 0.036 .0222008 .6801995
tixbot -.0173121 .0218706 -0.79 0.429 -.0601776 .0255534
workthen .1405108 .2189276 0.64 0.521 -.2885793 .569601
yearml .0157215 .0121813 1.29 0.197 -.0081534 .0395964
yearm2 -.0297081 .0267377 -1.11 0.267 -.082113 .0226969
yearm3 -.0045664 .0249939 -0.18 0.855 -.0535535 .0444207
yearm4 .0383519 .0274549 1.40 0.162 -.0154587 .0921626
yearm5 -.01489 .019728 -0.75 0.450 -.0535561 .0237762
yearmb6 .0032261 .0154827 0.21 0.835 -.0271194 .0335716
_cons 2.33555 .6431357 3.63 0.000 1.075027 3.596073
Mat_LLike[11,1]
Lrtest
Unrestricted -702.85896
Restricted X -710.90514
TStatistic X 16.092353
p-value X .18704265
Restrictio_X 12
Unrestricted -702.85896
Restricted_ S -800.33042
TStatistic_S 194.94292
p-value GPS 5.221e-42
Restrictio_S 3
N 16l
R S kI I I R Rk ki kI i
End of the assesment of the balancing property of the GPS
KAk Ak hkhhkhkhk kA hhhhhhkhkhhhhhhkhk A ddrhhhkhkhkhkhkhhkhhk kA rhhkhhkhkhkhkhkhhhhkhhrhhkk
KAk kkkhkhkhkkhkkkhkhkk*
DRF estimation
Khhkhkhkhkkkhkkkkkkkhkhk*k
Radial penalized spline estimator
Run 1 (Cpgq = 695.78)
Performing EM optimization:
Performing gradient-based optimization:
Iteration O: log restricted-likelihood = -517.16726
Iteration 1: log restricted-likelihood = -517.11175
Iteration 2: log restricted-likelihood = -517.11162
Iteration 3: log restricted-likelihood = -517.11162
Computing standard errors:
Mixed-effects REML regression Number of obs = 131
Group variable: _all Number of groups = 1
Obs per group: min = 131
avg = 131.0
max = 131
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Wald chi2 (2) 7.40
Log restricted-likelihood = -517.11162 Prob > chi2 0.0247
|
year6 Coef. Std. Err. z P>|z| [95% Conf. Interval]
prize -.1037621 .0913582 -1.14 0.256 -.2828209 .0752966
gps -1416.8 789.9379 -1.79 0.073 -2965.05 131.4495
_cons 28.2954 6.791852 4.17 0.000 14.98361 41.60718
Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]
_all: Identity
sd(__0000I7..__0000ID) (1) 6.37e-10 2.26e-09 5.98e-13 6.78e-07
sd (Residual) 13.38502 .836564 11.84184 15.12931
LR test vs. linear regression: chibar2(01) = 0.00 Prob >= chibar2 = 1.0000
(1) __0000I7 __0000I8 __0000I9 _ 0000IA _ 0000IB __0000IC __0000ID
. mat 1i e(b)
e(b)[1,20]
cl c2 c3 c4 c5
et 16.614437 13.590064 11.170396 9.5598933 8.957016
c6 c7 c8 c9 cl0
yl 9.2644672 10.19844 11.420449 12.608274 13.52113
cll cl2 cl3 cl4 clb
yl -.32016107 -.27469834 -.19155654 -.1022751 .01623526
clé6 cl7 clsg cl9 c20
yl .0706448 .1149412 .12509918 .10668906 .07023563
drop gps
bootstrap "DRF agew ownhs owncoll male tixbot workthen yearml yearm2 yearm3 yearmd4 //

yearm5 yearmé6,

outcome (year6) treatment (prize)

gpscore (gps)

test (L_

like)

tpoints (tp) numoverlap (3) method(radialpspline) family(gaussian) //
link (log) nknots(7) det delta(l)"_b, reps (50)
command: DRF agew ownhs owncoll male tixbot workthen yearml yearm2 yearm3 yearmd4 //
yearm5 yearmé6 , outcome (year6) treatment (prize) gpscore (gps) test(L_like) //
tpoints (tp) numoverlap (3) method(radialpspline) family (gaussian) //
link (log) nknots(7) det delta(l)
statistics: b_cl = _blcl]
b_c2 = _blc2]
b_c3 = _b[c3]
b_c4 = _blc4d]
b_c5 = _b[c5]
b_c6 = _blc6]
b_c7 = _b[c7]
b_c8 = _b[c8]
b_c9 = _b[c9]
b_clo0 = _b[cl0]
b_cll = b[cll]
b_cl2 = _b[cl2]
b_cl3 = _bl[cl3]
b_cl4 = b[c14]
b_cl5 = _blcl5]
b_cle = b[cl6]
b_cl7 = _blcl7]
b_cl8 = _b[cl8]
b_cl9 = b[cl9]
b_c20 = _b[c20]
note: label truncated to 80 characters
Bootstrap statistics Number of obs 191
Replications = 50
Variable Reps Observed Bias Std. Err. [95% Conf. Intervall]
b_cl 30 16.61444 -1.535679 4.242904 7.936724 25.29215 (N)
1.348377 19.68809 (P)
7.861991 19.68809 (BC)
b_c2 30 13.59006 -1.374677 5.171173 3.013828 24.1663 (N)
-9.351303 17.83814 (P)
2.659373 17.83814 (BC)
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b_c3 30 11.1704 -1.816147 6.801103 -2.739421 25.08021 (N)
-18.86036 18.12071 (P)
-1.620142 18.12071 (BC)
b_c4 30 9.559894 -2.904836 8.931471 -8.707015 27.8268 (N)
-29.52042 19.27784 (P)
-1.281503 19.27784 (BC)
b_c5 30 8.957016 -4.620706 11.4736 -14.50914 32.42317 (N)
-41.01822 19.24719 (P)
-4.842792 19.24719 (BC)
b_cé6 30 9.264467 -6.942414 14.29988 -19.98207 38.51101 (N)
-51.39978 19.97105 (P)
-9.806973 19.97105 (BC)
b_c7 30 10.19844 -9.677037 17.31045 -25.20541 45.60229 (N)
-59.86525 21.59847 (P)
-13.77467 21.59847 (BC)
b_c8 30 11.42045 -12.65516 20.59241 -30.69575 53.53665 (N)
-68.31172 24.65939 (P)
-16.06157 24.65939 (BC)
b_c9 30 12.60827 -15.76136 24.18286 -36.85123 62.06778 (N)
-79.07858 26.85438 (P)
-11.88224 26.85438 (BC)
b_cl0 30 13.52113 -18.89168 27.97965 -43.70369 70.74595 (N)
-92.27587 28.01503 (P)
-15.73032 28.01503 (BC)
b_cl1 30 -.3201611 .0299988 .2533333 -.8382858 .1979637 (N)
-1.054751 .1862844 (P)
-.6223834 .1862844  (BC)
b_cl2 30 -.2746983 -.0115712 .2310252 -.7471979 .1978012 (N)
-1.058791 .2192596 (P)
-.5139831 .2192596  (BC)
b_cl3 30 -.1915565 -.0866501 .2101515 -.6213645 .2382515 (N)
-.8595198 .1877503 (P)
-.3297973 .1877503 (BC)
b_cl4 30 -.1022751 -.1510106 .2708593 -.6562446 .4516944 (N)
-1.161376 .1373965 (P)
-.3703439 .1373965 (BC)
b_cl5 30 .0162353 -.2296974 .3323331 -.6634623 .6959328 (N)
-1.170888 .2759393 (P)
-.289534 .2759393 (BC)
b_clé6 30 .0706448 -.2615911 .354923 -.6552542 .7965438 (N)
-1.151995 .3282185 (P)
-.2635896 .3282185 (BC)
b_cl7 30 .1149412 -.2885368 .3644928 -.6305303 .8604127 (N)
-1.185669 .3742993 (P)
-.2724622 .3742993 (BC)
b_cl8 30 .1250992 -.3070457 .3806217 -.6533597 .9035581 (N)
-1.182581 .3550077 (P)
-.2560649 .3550077 (BC)
b_cl9 30 .1066891 -.313221 .3852914 -.6813202 .8946984 (N)
-1.202775 .286127 (P)
-.3090771 .286127 (BC)
b_c20 30 .0702356 -.3111099 .4012712 -.7504562 .8909275 (N)
-1.487813 .2179427 (P)
-.2892012 .2179427  (BC)
Note: N = normal
P = percentile
BC = bias-corrected

end of do-file

Figures 1 to 4 employ the point estimates from the DRF routine along with the standard
errors from the bootstrap. As can be seen from the figures, the two penalized spline
estimators and the IW kernel estimator lead to qualitatively similar results in this appli-
cation. However, it is important to note how the point estimates of the three estimators

tend to differ in our application as the treatment levels increase. This is because our
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Dose-response function
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Figure 1: Estimated dose-response functions
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Figure 2: Estimated marginal treatment effect functions
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data become scarcer as we move to higher values of the treatment. Given the nonpara-
metric nature of the methods we employ, estimation becomes noisier and the parameters
are estimated less precisely in regions of the data with few observations, which is also
reflected in the wider confidence intervals. In particular, note that the radial spline ap-
proach seems to be more sensitive to the size of the sample employed, as its confidence

bands are wider than those of the IW and penalized splines estimators (see Figure 3),

especially for values of 7; greater than 40.

In particular, we do not have many observations for very low or high values (> 40) of the treatment variable.
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Figure 3: 95% Confidence Bands for the dose-response functions
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Figure 4: 95% Confidence Bands for the marginal treatment effect functions
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