

WORKING PAPERS

A Stata package for the application of semiparametric estimators of dose-response functions

> Michela BIA¹ Carlos A. FLORES² Alfonso FLORES-LAGUNES³ Alessandra MATTEI⁴

CEPS/INSTEAD, Luxembourg¹ University of Miami, United-States² State University of New York, United-States³ University of Florence, Italy⁴

CEPS/INSTEAD Working Papers are intended to make research findings available and stimulate comments and discussion. They have been approved for circulation but are to be considered preliminary. They have not been edited and have not been subject to any peer review.

The views expressed in this paper are those of the author(s) and do not necessarily reflect views of CEPS/INSTEAD. Errors and omissions are the sole responsibility of the author(s).

A Stata package for the application of semiparametric estimators of dose-response functions*

Michela Bia

CEPS/INSTEAD, Esch-Sur-Alzette, Luxembourg

Carlos A. Flores

Department of Economics, Coral Gables, University of Miami, Florida

Alfonso Flores-Lagunes

Department of Economics, State University of New York, Binghamton

Alessandra Mattei

Department of Statistics, Informatics, Applications "G. Parenti" University of Florence, Italy

April, 2013

^{*}This research is part of the "Estimation of direct and indirect causal effects using semi-parametric and nonparametric methods" project supported by an AFR grant (PDR no. 09088) from the Luxembourg 'Fonds National de la Recherche' cofunded under the Marie Curie Actions of the European Commission (FP7-COFUND). The authors would like to thank Prof. Fabrizia Mealli, Guido Imbens and Philippe Van Kerm for the insightful and useful suggestions. The Stata package is available from the authors, please contact michela.bia@ceps.lu.

Abstract

In many observational studies the treatment may not be binary or categorical, but rather continuous in nature, so focus is on estimating a continuous dose-response function. In this paper we propose a set of Stata programs to semiparametrically estimate the dose-response function of a continuous treatment, under the key assumption that adjusting for pre-treatment variables removes all biases (uncounfoundedness). We focus on kernel methods and penalized spline models, and use generalized propensity score methods under continuous treatment regimes for covariate adjustment. Several alternative parametric assumptions on the functional form of the generalized propensity score are implemented in our Stata programs, which also allow users to impose a common support condition and evaluate the balancing of the covariates using various approaches. We illustrate our routines by estimating the effect of the prize amount on subsequent labor earnings for Massachusetts lottery winners, using a data set collected by Imbens et al. (2001).

Keywords: dose-response function, generalized propensity score, kernel estimator, penalized spline estimator, weak unconfoundedness

JEL classification codes: C13 ; J31 ; J70

1 Introduction

The evaluation process in the fields of economics, sociology, law, and many other areas generally relies on the implementation of non-experimental techniques to estimate average treatment effects. Propensity score methods (Rosenbaum and Rubin, 1983) are attractive empirical tools to balance the distribution of covariates between treatment groups, and analyze the comparability of the groups in terms of observed covariates. Under the key assumption of unconfoundedness, which requires that potential outcomes are independent of the treatment conditional on the observed covariates, propensity score methods eliminate or reduce the potential bias in treatment effect estimates in observational studies. The majority of applications aim at evaluating causal effects of a binary treatment. However, in many empirical studies, treatments may take on many values, implying that participants in the study may receive different treatment levels. In such cases, the focus is on assessing the heterogeneity of treatment effects arising from variation in the amount of treatment exposure, that is, on estimating a dose-response function (DRF).

Over the last years, propensity score methods have been generalized and applied to the case of multivalued treatments (e.g., Imbens, 2000; Lechner, 2001) and, more recently, continuous treatments and arbitrary treatment regimes (e.g., Hirano and Imbens, 2004; Imai and VanDyk, 2004; Flores et al., 2012; Bia and Mattei, 2012; Kluve et al., 2012).

In this paper we build on the work by Hirano and Imbens (2004), who introduced the concept of the Generalized Propensity Score (GPS) and employed it to estimate the entire DRF of a continuous treatment. Hirano and Imbens (2004) used a *parametric* partial mean approach to estimate the DRF. Here we focus on *semiparametric* techniques. Specifically, we develop a set of Stata programs which allow users to (i) estimate the GPS under various alternative parametric assumptions; (ii) impose the common support condition as defined in Flores et al. (2012) and assess the balance of covariates after adjusting for the estimated GPS; (iii) estimate the DRF using the estimated GPS by employing either the nonparametric inverse-weighting (IW) estimator developed in Flores et al. (2012), or a new set of semiparametric estimators based on penalized spline techniques.

We illustrate these programs using a data set collected by Imbens et al. (2001). The winners of the Megabucks lottery in Massachusetts in the mid-1980's represent the reference

population. We implement our programs to semiparametrically estimate the average potential post-winning labor earnings for each amount of the lottery prize (DRF). The assignment of the prize is obviously random, but unit nonresponse led to a self-selected sample where the amount of the prize received is no longer independent of background characteristics. As in the binary treatment case, the extent to which the bias generated by confounding factors is reduced heavily depends on the richness of the pre-treatment variables available in the empirical study.

The paper is organized as follows. Section 2 describes the methodological approach we refer to in the analysis. Section 3 introduces the generalized propensity score model and the semiparametric estimators of the DRF, and Section 4 shows the syntax of the DRF.ado. Section 6 illustrates the methods and the Stata program discussed in the paper using a survey of Massachusetts lottery winners (Imbens et al., 2001).

2 Description

We estimate a continuous DRF that relates each value of the dose (e.g., lottery prize level) to the outcome variable (e.g., post-winning labor earnings) within the potential outcome approach to causal inference (Rubin, 1974; Rubin, 1978). Formally, consider a set of N individuals, and denote each of them by subscript i: i = 1, ..., N. Under the stable unit treatment value assumption (SUTVA (Rubin, 1980; Rubin, 1990)), for each unit i there is a set of potential outcomes $\{Y_i(t)\}_{t\in\mathcal{T}}$, where \mathcal{T} is a subset of the real line, $\mathcal{T} \subset \mathcal{R}$. We are interested in estimating the average DRF, $\mu(t) = E[Y_i(t)]$.

For each individual *i*, we observe a vector of pre-treatment covariates, X_i , the received treatment level, T_i , and the corresponding value of the outcome for this treatment level, $Y_i = Y_i(T_i)$.

The central assumption of our approach is that the assignment to treatment levels is weakly unconfounded given the set of observable variables, i.e., $Y_i(t) \perp T_i | X_i$ for all $t \in \mathcal{T}$ (Hirano and Imbens, 2004). This assumption is described as *weak unconfoundedness* because it only requires conditional independence for each potential outcome $Y_i(t)$, rather than joint independence of all potential outcomes.

Under weak unconfoundedness, we can apply the techniques based on the GPS with continuous treatments introduced by Hirano and Imbens (2004). Let $r(t,x) = f_{T|X}(t|x)$

be the conditional density of the treatment given the covariates. The GPS is defined as $R_i = r(T_i, X_i)$. The GPS is a balancing score (e.g., Rosenbaum and Rubin, 1983), that is, within strata with the same value of r(t, x), the probability that T = t does not depend on the value of X. The weak unconfoundedness assumption, combined with the balancing score property, implies that assignment to treatment is weakly unconfounded given the GPS. Formally,

$$f_T(t|r(t, X_i), Y_i(t)) = f_T(t|r(t, X_i))$$

for every $t \in \mathcal{T}$, Theorem 1.2.2 in Hirano and Imbens (2004). Thus, any bias associated with differences in the distribution of covariates across groups with different treatment levels can be removed using the GPS. Formally, Hirano and Imbens (2004) show that if the assignment to the treatment is weakly unconfounded given pre-treatment variables X_i , then $\mu(t) = E \left[\beta(t, r(t, X_i))\right]$, where $\beta(t, r) = E \left[Y_i(t) | r(t, X_i) = r\right] = E \left[Y_i | T_i = t, R_i = r\right]$

3 Inference

We employ two-step semiparametric estimators of the DRF. The first step involves parametrically modelling and estimating the GPS, $R(T_i, X_i)$, and assessing the common support condition and the balancing of covariates property. The second step consists of estimating the DRF, $\mu(t)$, using either the nonparametric IW kernel estimator proposed by Flores et al., (2012) or a semiparametric spline-based estimator. These two steps are implemented in the Stata routine DRF. ado, which is described here in detail.

3.1 Estimation of the Generalized Propensity Score

The first part of the DRF.ado program computes the GPS, allows users to impose an overlap condition, and tests the balancing property of the GPS.

The GPS is estimated parametrically under various alternative distributional assumptions. Specifically, we assume that

$$g(T_i|X_i) \sim \psi\left(h(\gamma, X_i), \theta\right) \tag{1}$$

where g() is a link function, ψ is a probability density function (pdf), h() is a flexible function of the covariates depending on an unknown parameter vector γ , and θ is a scale parameter. In the DRF.ado program we consider the Normal, Inverse Gaussian, and Gamma distributions; using the identity function, the logarithm, and the power function as link functions. A two-parameter Beta distribution is also implemented to address evaluation problems where the treatment variable takes on values in the interval (0, 1), representing, for instance, a proportion. Maximum likelihood methods are employed to fit these models, using the official Stata command glm or using the user-written package betafit (Buis et al., 2012)¹.

Let \hat{R}_i be the estimated GPS. An important issue in GPS applications is determining the "common support" or "overlap region". The DRF . ado program allows users to do this using the approach proposed by Flores et al., (2012). Specifically, the sample is first divided into K groups according to the distribution of the treatment, cutting at the 100 k/Kth, $k = 1, \ldots, K-1$ percentile of the treatment empirical distribution. Let Q_i be the percentile unit i belongs to. For each percentile q_k , let \hat{R}_i^k be the GPS evaluated at the median level of the treatment in that percentile for unit i, which is calculated for all units. The common support region with respect to percentile q_k to that of units with $Q_i \neq q_k$. Finally, the sample is restricted to units who are comparable across all the K groups simultaneously, dropping participants whose GPS is not among the common support region for all K groups. Formally:

$$CS = \bigcap_{q=1}^{K} \{ i : \hat{R}_{i}^{q} \in [max\{min_{j:Q_{j}=q}\hat{R}_{j}^{q}, min_{j:Q_{j}\neq q}\hat{R}_{j}^{q}\}, min\{max_{j:Q_{j}=q}\hat{R}_{j}^{q}, max_{j:Q_{j}\neq q}\hat{R}_{j}^{q}\}] \}$$

Similarly to applications of standard propensity score methods, in GPS applications it is crucial to evaluate how well the estimated GPS works in balancing the covariates. Several methods can be applied to test the balancing properties of the GPS. In the DRF . ado command, two approaches are implemented: the 'blocking on the GPS' approach and an approach based on a likelihood ratio (LR) test. The 'blocking on the GPS' approach was proposed by Hirano and Imbens (2004), and it is implemented in the DRF . ado routine using two-sided *t*-test or Bayes Factor statistics (see also Bia and Mattei, 2008). The second approach was proposed by Flores et al. (2012), who suggested to compare an *unrestricted* model for T_i including all covariates plus the GPS (up to a cubic term), with a *restricted* model that sets the coefficients of all covariates to zero, using a LR test. If the GPS sufficiently balances the covariates, then they should have little explanatory power conditional on the GPS.²

¹betafit (version 1.0.0 at time of writing) is available from the Statistical Software Components archive (or -findit betafit-) and must be installed separately from DRF.

²An alternative approach, which is not implemented in our Stata program, was proposed by Kluve et al.

3.2 Estimation of the Dose-Response Function

In the second stage of the DRF.ado program, we estimate the DRF by applying spline and kernel techniques. We first describe the spline estimator and then we move to the IW kernel estimator.

As in Hirano and Imbens (2004), we employ a partial mean approach (Newey, 1994) when spline techniques are considered. Specifically, we first estimate the conditional expectation of the observed outcome Y_i given the treatment actually received, T_i , and the GPS estimated in the first stage, \hat{R}_i , using bivariate penalized spline smoothing based on additive spline bases, tensor products of spline bases, or radial basis functions (Ruppert et al., 2003). Mixed models provide a representation of the penalized splines that allows smoothing to be done using mixed model methodologies and software. In our routine, we use the Stata routine xtmixed to fit penalized spline regressions. The average dose-response function at t is estimated by averaging the estimated regression function over the estimated score function evaluated at the specific treatment level t, i.e., $\hat{R}_i^t \equiv \hat{r}(t, X_i)$.

The simplest bivariate penalized spline smoothing relies on additive spline bases, which can be formally defined in our setting as follows:

$$E(Y_i|T_i, \hat{R}_i) = a_0 + a_t T_i + a_r \hat{R}_i + \sum_{k=1}^{K^t} u_k^t (T_i - k_k^t)_+ + \sum_{k=1}^{K^r} u_k^r (\hat{R}_i - k_k^r)_+$$
(2)

where for any number z, z_+ is equal to z if z is positive and is equal to 0 otherwise, and $k_1^t < \ldots < k_{K^t}^t$ and $k_1 < \ldots < k_{K^r}^r$ are K^t and K^r distinct knots in the support of T and the support of the estimated GPS, \hat{R}_i , respectively.

The additive models have many attractive features, including their simplicity. However, an additive model may not provide a satisfactory fit, so nonadditive models including interaction terms are required. To this end, we consider tensor product bases, which are obtained by forming all pairwise products of the basis functions $1, T_i, (T_i - k_1^t) \dots, (T_i - k_{K^t}^t)$ and

^{(2012).} It consists of regressing each covariate on the treatment variable and comparing the significance of the coefficients for specifications with and without conditioning on the GPS.

$$1, \hat{R}_{i}, (\hat{R}_{i} - k_{1}^{r}) \dots, (\hat{R}_{i} - k_{K^{r}}^{t}). \text{ Formally,}$$

$$E(Y_{i}|T_{i}, \hat{R}_{i}) = a_{0} + a_{t}T_{i} + a_{r}\hat{R}_{i} + \lambda T_{i}\hat{R}_{i} + \sum_{k=1}^{K^{t}} u_{k}^{t}(T_{i} - k_{k}^{t})_{+} + \sum_{k=1}^{K^{r}} u_{k}^{r}(\hat{R}_{i} - k_{k}^{r})_{+} + \sum_{k=1}^{K^{r}} v_{k}^{r}\hat{R}_{i}(T_{i} - k_{k}^{t})_{+} + \sum_{k=1}^{K^{t}} v_{k}^{t}T_{i}(\hat{R}_{i} - k_{k}^{r})_{+} + \sum_{k=1}^{K^{t}} \sum_{k'=1}^{K^{r}} \sum_{k'=1}^{K^{r}} v_{kk'}^{tr}(T_{i} - k_{k}^{t})_{+} (\hat{R}_{i} - k_{k'}^{r})_{+}$$

$$(3)$$

Note that estimation problems may arise when the tensor product approach is applied, especially if the sample size is relatively small. When these problems arise, the DRF.ado alerts users suggesting them to adopt an additive model instead.

An alternative to tensor product splines is given by the so-called *radial basis functions*, which are basis functions of the form C(||(t,r)' - (k,k')'||) for some univariate function C. Here we consider the following function

$$C\left(\left\| \begin{pmatrix} t \\ r \end{pmatrix} - \begin{pmatrix} k^t \\ k^r \end{pmatrix} \right\| \right) = \left\| \begin{pmatrix} t \\ r \end{pmatrix} - \begin{pmatrix} k^t \\ k^r \end{pmatrix} \right\|^2 \log \left\| \begin{pmatrix} t \\ r \end{pmatrix} - \begin{pmatrix} k^t \\ k^r \end{pmatrix} \right\|$$

where $\|\cdot\|$ is the Euclidean norm, and we assume that

$$E(Y_i|T_i, \hat{R}_i) = a_0 + a_t T_i + a_r \hat{R}_i + \lambda T_i \hat{R}_i + \sum_{k=1}^K u_k C\left(\left\| \begin{pmatrix} T_i \\ \hat{R}_i \end{pmatrix} - \begin{pmatrix} k_k^t \\ k_k^r \end{pmatrix} \right\|\right)$$
(4)

where u_1, \cdots, u_k are random variables with mean 0, and variance-covariance matrix $Cov(u) = \sigma_u^2(\Omega_k^{-\frac{1}{2}})(\Omega_k^{-\frac{1}{2}})'$, with $\Omega_k = \left[C \left(\left\| \begin{pmatrix} k_k^t \\ k_k^r \end{pmatrix} - \begin{pmatrix} k_{k'}^t \\ k_{k'}^r \end{pmatrix} \right\| \right) \right]_{1 \le k, k' \le K}$.

Given the estimated parameters of the regression function (2), (3) or (4), the average potential outcome at treatment level t is estimated by averaging over \hat{R}_i^t .

Flores et al. (2012) proposed to estimate the DRF using a nonparametric Inverse-Weighting (IW) estimator based on kernel methods. In this approach, the estimated scores are used to weight observations to adjust for covariate differences. Let K(u) be a kernel function with the usual properties and let h be a bandwidth satisfying $h \to 0$ and $Nh \to \infty$ as $N \to \infty$. The IW approach is implemented using a local linear regression of Y on T with weighted kernel function $\tilde{K}_{h,X}(T_i-t) = K_h(T_i-t)/\hat{R}_i^t$, where $K_h(z) = h^{-1}K(z/h)$. Formally, the IW Kernel Estimator of the average DRF is defined as follows:

$$\widehat{E[Y(t)]} = \frac{D_0(t)S_2(t) - D_1(t)S_1(t)}{S_0(t)S_2(t) - S_1^2(t)}$$

where $S_j(t) = \sum_{i=1}^N \tilde{K}_{hX}(T_i - t)(T_i - t)^j$ and $D_j(t) = \sum_{i=1}^N \tilde{K}_{hX}(T_i - t)(T_i - t)^j Y_i$, j = 0, 1, 2.

We implement the IW estimator using a normal kernel. By default, the global bandwidth is selected using the procedure proposed by Fan and Gijbels (1996), which is based on estimating the unknown terms appearing in the optimal global bandwidth by employing a global polynomial of order p plus 3, where p is the order of the local polynomial fitted. However, users can also arbitrary choose an alternative global bandwidth.

4 Syntax

DRF varlist [weight] [if] [in], outcome(varname) treatment(varname) gpscore(newvar)
cutpoints(varname) index(string) nq_gps(#) method(type) [family(familyname)
link(linkname) vce(string) common(#) numoverlap(#) test_varlist(varlist)
test(type) flag(#) tpoints(vector) npoints(#) npercentiles(#) detail
delta(#) bandwidth(#) degreel(#) degree2(#) nknots1(#) nknots2(#)
knots1(#) knots2(#) additive nknots(#) knots(#) standardized
estopts(string) det]

Note that, in the command DRF.ado, the argument *varlist* represents the observed pretreatment variables, which are used to estimate the generalized propensity score.

5 Options

5.1 Compulsory Options

I/ outcome (varname) specifies that varname is the outcome variable.

treatment (varname) specifies that varname is the treatment variable.

gpscore (*newvar*) asks users to specify the variable name for the estimated generalized propensity score.

method (*type*) specifies the *type* of approach to be used in estimating the dose-response function. The implemented approaches are bivariate penalized splines (*type* = mtspline), bivariate penalized radial splines (*type* = radialpspline) or IW kernel (*type* = iwkernel).³

³The subroutines mtpspline and radialpspline are respectively called when estimators based on penalized splines (*type = mtspline*) and penalized radial splines (*type = radialpspline*) are used.

cutpoints (varname) divides the range or set of the possible treatment values, Y, into intervals within which the balancing properties of the GPS are checked using a 'blocking on the GPS' approach. varname is a variable indicating to which interval each observation belongs to. If flag is set to 0 (see below), this option is not compulsory. index (*string*) specifies the representative point of the treatment variable at which the GPS has to be evaluated within each treatment interval specified in cutpoints (*varname*). The argument *string* identifies either the mean (*string* = mean) or a percentile (*string* = p1, ..., p100) of the treatment. This is used when checking the balancing properties of the GPS evaluated at the representative point index (*string*). If flag is set to 0 (see below), this option is not compulsory.

nq_gps (#) specifies that, for each treatment interval defined in cutpoints (*varname*), the values of the GPS evaluated at the representative point index (*string*) have to be divided into # ($\# \in \{1, ..., 100\}$) intervals, defined by the quantiles of the GPS evaluated at the representative point index (*string*). This is used when setting the balancing properties of the GPS employing a 'blocking on the GPS' approach. If flag is set to 0 (see below), this option is not compulsory

5.2 Uncompulsory Options

I/ Global Options

a) GPS Estimation Options

family(familyname) specifies the distribution used to estimate the Generalized Propensity Score. The available distributional families are Gaussian (normal) (family(gaussian)), Inverse Gaussian (family(igaussian)), Gamma (family(gamma)), and Beta(family(beta)). The default is family(gaussian). The Gaussian, Inverse Gaussian and Gamma distributional families are fitted using glm, the Beta distribution is fitted using betafit. The following two options are for the glm command, so they can be only specified when the Gaussian, Inverse Gaussian or Gamma distribution is assumed for the treatment variable. link(linkname) specifies the link function for the Gaussian, Inverse Gaussian

and Gamma distributional families. The available links are link (identity),

link(log) and link(pow), and the default is the canonical link for the family()
specified (see help for glm for further details).

vce (*vcetype*) specifies the type of standard error reported for the GPS estimation, when the Gaussian, Inverse Gaussian or Gamma distribution is assumed for the treatment variable. *vcetype* may be oim, robust, cluster, clustvar, eim, opg, <u>boot</u>strap, <u>jack</u>knife, hac, kernel, jackknife1 (see help for glm for further details).

b) Overlap Options

common (#) is a flag (# $\in \{0, 1\}$), which restricts the inference to the subsample satisfying the common support condition when it is switched on (#= 1). The default value is 1.

<u>numoverlap</u>(#) specifies that the common support condition is imposed by dividing the sample into # groups according to # quantiles of the treatment distribution. By default the sample is divided into five groups, cutting at the 20th, 40th, 60th and 80th percentiles of the distribution if common (1).

c) Balancing Property Assessment Options

test_varlist (*varlist*) specifies that the balancing property has to be assessed for each variable in *varlist*. The default *test_varlist* consists of all the variables used to estimate the generalized propensity score.

test (*type*) allows users to specify whether the balancing property is to be assessed using a 'blocking on the GPS' approach, based on either standard two-sided t-tests (test (t_test)) or Bayes-factors (test ($Bayes_factor$)), and/or a model comparison approach based on a likelihood ratio (LR) test (test (t_test)).

The 'blocking on the GPS' approach, based on standard two-sided *t*-tests, provides the values of the test statistics before and after adjusting for the GPS for each pretreatment variable included in test_varlist (*varlist*) and for each pre-fixed treatment interval specified in cutpoints. Specifically, let p be the number of control variables in test_varlist (*varlist*), and let K be the number of treatment intervals specified in cutpoints (*varlist*). Then, the program calculates and shows pxK values of the test statistic before and after adjusting for the GPS, where the adjustment is done by dividing (or blocking) the values of the GPS evaluated at the representative point index (*string*) into the number of intervals specified in nq_gps (#). See Hirano and Imbens (2004) for further details.

The model comparison approach uses a likelihood ratio test to compare an unrestricted model for T_i including all the covariates plus the GPS (up to a cubic term), with a restricted model that sets the coefficients of all covariates to 0. By default, both the 'blocking on the GPS' approach and the model comparison approach are applied.

flag (#) allows the user to specify that DRF. ado estimates the GPS without performing the balancing test. The default # is 1, meaning that the balancing property must be assessed.

c) DRF Options

tpoints (*vector*) indicates that the average potential outcome function or DRF is to be estimated at each level of the treatment in *vector*. By default, the DRF.ado creates a vector with *j*th element equal to the *j*th observed treatment value. This option can not be used along with either the option npoints (#) or npercentiles (#) (see below).

npoints (#) indicates that the DRF is to be estimated at each level of the treatment belonging to a set of evenly spaced values $t_0, t_1, \ldots, t_{\#}$, that cover the range of the observed treatment. This option can not be used along with either the option tpoints (#) (see above) or npercentiles (#) (see below).

<u>npercentiles</u> (#) indicates that the DRF is to be estimated at each level of the treatment belonging to a set of evenly spaced number of quantiles $t_{q0}, t_{q1}, \ldots, t_{q\#}$, that cover the range of the observed treatment. This option can not be used along with either the option tpoints (#) or npoints (#) (see above)

det displays more detailed output for the DRF estimation. When this option is not specified, the program only displays the name of the chosen technique: method (*radialpspline*), method (*mtpspline*), or method (*iwkernel*)).

delta (#) specifies that DRF.ado also estimates the treatment effect function $\mu(t + \#) - \mu(t)$. The default # is 0, meaning that DRF.ado only estimates the dose-response function, $\mu(t)$.

II/ Options for the IW Kernel estimator (iwkernel)

<u>bandwith</u> (#) specifies the bandwidth to be used. By default, the global bandwidth is chosen using the automatic procedure described in Fan and Gijbels (1996). This procedure is based on estimating the unknown terms appearing in the optimal global bandwidth by employing a global polynomial of order p plus 3, where p is the order of the local polynomial fitted.

III/ Options for the radial penalized spline estimator (radialpspline)

nknots (#) specifies the number # of knots to be selected in the two-dimensional space of the treatment variable and the generalized propensity score. The default choice of # is $max(20, min(\frac{n}{4}, 150))$ where n is the number of unique T_i , R_i (Ruppert et al., 2003). When this option is specified, the subroutines radialpspline and spacefill (Bia and Van Kerm, 2013) are applied.⁴ This option can not be used along with the option knots (*numlist*) (see below).

knots (*numlist*) specifies the list of knots for the treatment and the GPS variable. This option can not be used along with the option nknots (#) (see above).

standardized allows users to standardize the treatment variable and the generalized propensity score before selecting the knots. The knots are defined based on the standardized variable.

IV/ Options for the tensor-product penalized spline estimator (mtpspline)

degree1(#) specifies the power of the treatment variable included in the penalized spline model. The default is degree1(1).

degree2 (#) specifies the power of the generalized propensity score included in the penalized spline model. The default is degree2 (1).

nknots1 (#) specifies the number (#) of knots for the treatment variable. The location of the K_k th knot is defined as $\frac{k+1}{\#+2}$ th sample quantile of the unique T_i , for k = 1, ..., #. The default choice of # is $max(5, min(\frac{n}{4}, 35))$, where n is the number of unique T_i (Ruppert et al., 2003). This option can not be used along with the option knots1 (*numlist*) (see below).

nknots2 (#) specifies the number (#) of knots for the generalized propensity score. The location of the K_k th knot is defined as $\frac{k+1}{\#+2}$ th sample quantile of the

 $^{^4}$ spacefill (version 1.0.0 at time of writing) is available from the authors (or -findit spacefill-) and must be installed separately from DRF.

unique R_i , for k = 1, ..., #. The default choice of # is $max(5, min(\frac{n}{4}, 35))$, where n is the number of unique R_i (Ruppert et al., 2003). This option can not be used along with the option knots2 (*numlist*) (see below).

knots1 (numlist) specifies the list of knots for the treatment variable. This option
can not be used along with the option nknots1 (#) (see above).

knots2 (*numlist*) specifies the list of knots for the generalized propensity score. This option can not be used along with the option nknots2 (#) (see above).

additive allows user to implement penalized splines based on the additive model, without including the product terms.

V/ Mutual options for the tensor-product and radial penalized spline estimators

Mutual options for the tensor-product and radial penalized spline estimators involve either the mtpspline subroutine or the radialpspline subroutine, depending on which estimator is used.

estopts specifies all the possible *options* allowed when running the xtmixed models to fit penalized spline models (see help for estopts for further details).

6 Example: the Lottery Dataset

We illustrate the methods and the Stata program discussed in the previous sections by re-analyzing data coming from a survey of Massachusetts lottery winners (see Imbens et al. (2001) for details on the survey). The focus is on evaluating the effect of the prize amount on future labor earnings (from social security records). This example is also considered in Hirano and Imbens (2004).

The sample we use consists of 237 individuals who won a major prize in the lottery. The outcome of interest is earnings six years after winning the lottery ("year6"), and the treatment is the prize amount ("prize"). Pre-treatment variables are age, gender, years of high school, years of college, winning year, number of tickets bought, working status after winning, and earnings s years before winning the lottery, s = 1, 2, ..., 6. To avoid results driven by outliers, we drop observations belonging to the upper 5% of the treatment variable distribution.

We estimate the DRF and the marginal treatment effect function, which represents the

marginal propensity to earn out of the yearly prize money, using the DRF routine. We apply both penalized spline techniques and the IW kernel estimator, although details on the output from running DRF are only shown for the radial penalized spline estimator (method (*radialpspline*)). First, the GPS model and summary statistics of the estimated GPS are shown, and the common support is determined. The results show that 30 observations are dropped from the analysis after imposing the common support condition. Then, the balancing property is assessed. We specify the test (L_like) command for the balancing test, so the model comparison approach, based on the likelihood ratio (LR) test, is reported. The LR test shows that the GPS balances the covariates, since they have little explanatory power conditional on the GPS. In particular, the restricted model for T_i that excludes the covariates cannot be rejected at the usual significance levels (p-value is 0.187), whereas the restricted model that excludes the GPS is soundly rejected (p-value is 0). Finally, the DRF and the marginal treatment effect function are estimated. Note that the option det is specified, so details on the estimation of the DRF are shown.

Figures 1 and 2 show the dose-response functions and the marginal treatment effect functions using three alternative estimators: IW Kernel, multivariate penalized spline, radial penalized spline. Figures 3 and 4 show these functions along with pointwise 95% confidence bands. The standard errors are computed calling the DRF program in the bootstrap command.⁵ Following Hirano and Imbens (2004), we report the value of these functions at \$10,000 increments for all values between \$10,000 and \$100,000.

. us	se "Lottery/Lott	eryDataSet.dta",	clear	
. dı (35 . sı	cop if year6==. observations de prize, de Treat	eleted) ment variable =	Prize amount	
	Percentiles	Smallest		
1%	5.3558	1.139		
5%	10.05	5		
10%	11.246	5.3558	Obs	202
25%	17.034	6.844	Sum of Wgt.	202
50%	32.1835		Mean	57.36918
		Largest	Std. Dev.	64.84194
75%	71.642	270.1		
90%	137.27	305.09	Variance	4204.477
95%	171.73	323.32	Skewness	2.821964
99%	305.09	484.79	Kurtosis	14.18278
. dı (11	cop if prize >= observations de	= r(p95) eleted)		

⁵The bootstrap command can lead to slightly different "observed" estimates, when using the spline-based models, due to a random selection of the knots values.

```
. replace year6 = year6/1000
year6 was long now double
(92 real changes made)
. mat def tp = (10\20\30\40\50\60\70\80\90\100)
. set more off
. DRF agew ownhs owncoll male tixbot workthen yearm1 yearm2 yearm3 yearm4 yearm5 yearm6, ///
 outcome(year6) treatment(prize) gpscore(gps) test(L_like) ///
tpoints(tp) numoverlap(3) method(radialpspline) family(gaussian) ///
 link(log) nknots(7) det delta(1)
*****
Algorithm to estimate the generalized propensity score
Estimation of the propensity score
Iteration 0: log likelihood = -983.63224
              \log likelihood = -958.61638
Iteration 1:
            log likelihood = -953.76331
log likelihood = -953.73191
Iteration 2:
Iteration 3:
Iteration 4:
            log likelihood = -953.73189
Generalized linear models
                                                 No. of obs
                                                                       191
                                                               =
Optimization : ML
                                                 Residual df
                                                                        178
                                                               =
                                                 Scale parameter = 1365.58
                                                                   1365.58
               = 243073.1517
= 243073.1517
Deviance
                                                 (1/df) Deviance =
Pearson
                                                 (1/df) Pearson =
                                                                    1365.58
Variance function: V(u) = 1
                                                 [Gaussian]
Link function : g(u) = ln(u)
                                                 [Log]
                                                                = 10.12285
                                                 ATC
Log likelihood = -953.731889
                                                 BIC
                                                                = 242138.2
                             OIM
                  Coef. Std. Err.
                                     z P>|z| [95% Conf. Interval]
      prize |
```

agew	.0158337	.0053884	2.94	0.003	.0052727	.0263947
ownhs	.0585064	.0742126	0.79	0.430	0869476	.2039604
owncoll	0108263	.0389408	-0.28	0.781	0871488	.0654962
male	.361554	.1564085	2.31	0.021	.054999	.6681091
tixbot	0174202	.0188308	-0.93	0.355	054328	.0194875
workthen	.068044	.1819285	0.37	0.708	2885292	.4246172
yearml	0033454	.0102149	-0.33	0.743	0233662	.0166754
yearm2	.0018299	.0151926	0.12	0.904	0279471	.0316069
yearm3	0190244	.0134829	-1.41	0.158	0454505	.0074016
yearm4	.0451296	.0194034	2.33	0.020	.0070996	.0831596
yearm5	0094795	.0147496	-0.64	0.520	0383882	.0194293
yearm6	0055688	.0084792	-0.66	0.511	0221876	.0110501
_cons	2.534394	.489911	5.17	0.000	1.574186	3.494602

Note: The common support condition is imposed

ane

		9P5		
	Percentiles	Smallest		
1%	.0000774	.0000308		
5%	.0012373	.0000774		
10%	.003318	.0003464	Obs	161
25%	.0076905	.0004499	Sum of Wgt.	161
50%	.0092542		Mean	.0081786
		Largest	Std. Dev.	.0029689
75%	.0103334	.0107928		
90%	.0107199	.010793	Variance	8.81e-06
95%	.0107774	.0107953	Skewness	-1.385411
99%	.0107953	.0107956	Kurtosis	3.790638
* * * * *	* * * * * * * * * * * * * * * *	****	* * * * * * * * * *	
End o	of the algorithm	n to estimate tl	he gpscore	
* * * * *	*****	****	* * * * * * * * * *	
* * * * *	* * * * * * * * * * * * * * * *	* * * * * * * * * * * * * *	* * * * * * * * * * * * * * * *	* * * * * * * * * * * * * *
Begir	nning of the ass	essment of the	balancing prope	rty of the GPS

* * * * * * * * * * * * * * * * * * * *								
Log-Likelihood	Log-Likelihood test for Unrestricted and Restricted Model							
* * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * *						
***********	* * * * *							
Unrestricted N	1odel							
* * * * * * * * * * * * * * * * * *	* * * * *							
Iteration 0:	log likelihood = -729.44776							
Iteration 1:	log likelihood = -707.12056							
Iteration 2:	$\log 1$ likelihood = -702.86233							
Iteration 3:	$\log 1$ likelihood = -702.85896							
Iteration 4:	$\log 1$ [ike] ihood = -702.85896							
				1.61				
Generalized lin	hear models	No. of obs	=	101				
Optimization	: ML	Residual df	=	145				
		Scale parameter	=	402.607				
Deviance	= 58378.00995	(1/df) Deviance	=	402.607				
Pearson	= 58378.00995	(1/df) Pearson	=	402.607				
Variance funct:	ion: V(u) = 1	[Gaussian]						
Link function	: g(u) = ln(u)	[Log]						
		AIC	=	8.929925				
Log likelihood	= -702.8589642	BIC	=	57641.21				

		OIM				
prize	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
qps	-220.8653	104.513	-2.11	0.035	-425.707	-16.02369
0000G9	-30660.92	23793.14	-1.29	0.198	-77294.61	15972.77
0000GA	3475308	1464036	2.37	0.018	605850.8	6344765
agew	.0084917	.0037021	2.29	0.022	.0012357	.0157477
ownhs	.0003809	.0351644	0.01	0.991	0685401	.0693019
owncoll	.0279188	.0293008	0.95	0.341	0295097	.0853473
male	0500428	.0975023	-0.51	0.608	2411438	.1410582
tixbot	013928	.0112878	-1.23	0.217	0360518	.0081957
workthen	0463551	.1273178	-0.36	0.716	2958933	.2031832
yearml	.0059355	.0082222	0.72	0.470	0101797	.0220506
yearm2	0126701	.0127231	-1.00	0.319	037607	.0122668
yearm3	.026964	.0152109	1.77	0.076	0028488	.0567768
yearm4	0053107	.0110529	-0.48	0.631	026974	.0163526
yearm5	0121311	.0125158	-0.97	0.332	0366618	.0123995
yearm6	.0013759	.0074775	0.18	0.854	0132798	.0160316
_cons	4.789697	.2886318	16.59	0.000	4.223989	5.355404

Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4:	log log log log log	likelihood likelihood likelihood likelihood	= -729.67192 = -713.08728 = -710.90557 = -710.90514 = -710.90514		
Generalized linear models Optimization : ML					

Deviance =	64514.61459
Pearson =	64514.61459
Variance function:	V(u) = 1
Link function :	g(u) = ln(u)

Log	likelihood	=	-710.	9051408
-----	------------	---	-------	---------

prize	Coef.	OIM Std. Err.	Z	₽> z	[95% Conf.	Interval]
gps	-132.0542	84.23995	-1.57	0.117	-297.1615	33.05306
0000G9	-44893.96	20771.74	-2.16	0.031	-85605.83	-4182.096
0000GA	4098231	1330420	3.08	0.002	1490655	6705807
cons	5.059741	.0710639	71.20	0.000	4.920458	5.199024

No. of obs = 161 Residual df = 157 Scale parameter = 410.9211 (1/df) Deviance = 410.9211 (1/df) Pearson = 410.9211

> = 8.880809 = 63716.83

[Gaussian] [Log] AIC DIC

* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* *
Iteration 0: log	likelihood = -831.02695	
Iteration 1: log	likelihood = -805.81266	
Iteration 2: log	likelihood = -800.34889	
Iteration 3: log	likelihood = -800.33044	
Iteration 4: log	likelihood = -800.33042	
Generalized linear	models	No. of obs
Optimization :	ML	Residual df
		Scale param

Optimization	: ML	Residual df =	148
		Scale parameter =	1323.861
Deviance	= 195931.4489	(1/df) Deviance =	1323.861
Pearson	= 195931.4489	(1/df) Pearson =	1323.861
Variance funct	ion: V(u) = 1	[Gaussian]	
Link function	: g(u) = ln(u)	[Log]	
		AIC =	10.10348
Log likelihood	= -800.3304227	BIC =	195179.4

161

		OIM				
prize	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
agew	.0190611	.0079541	2.40	0.017	.0034713	.034651
ownhs	.0405098	.0891411	0.45	0.650	1342035	.2152231
owncoll	.0224632	.0477538	0.47	0.638	0711326	.116059
male	.3512001	.1678599	2.09	0.036	.0222008	.6801995
tixbot	0173121	.0218706	-0.79	0.429	0601776	.0255534
workthen	.1405108	.2189276	0.64	0.521	2885793	.569601
yearml	.0157215	.0121813	1.29	0.197	0081534	.0395964
yearm2	0297081	.0267377	-1.11	0.267	082113	.0226969
yearm3	0045664	.0249939	-0.18	0.855	0535535	.0444207
yearm4	.0383519	.0274549	1.40	0.162	0154587	.0921626
yearm5	01489	.019728	-0.75	0.450	0535561	.0237762
yearm6	.0032261	.0154827	0.21	0.835	0271194	.0335716
cons	2.33555	.6431357	3.63	0.000	1.075027	3.596073

Mat_LLike[11,1]

```
Lrtest
Unrestricted -702.85896
Restricted X -710.90514
TStatistic_X 16.092353
            __.092353
.18704265
 p-value X
Restrictio_X
                   12
Unrestricted -702.85896
Restricted_S -800.33042
TStatistic_S 194.94292
p-value GPS 5.221e-42
Restrictio_S
              3
          Ν
                   161
End of the assesment of the balancing property of the GPS
* * * * * * * * * * * * * * * *
DRF estimation
*****
Radial penalized spline estimator
                                        (Cpq =
                                                      695.78)
Run 1 ..
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log restricted-likelihood = -517.16726
Iteration 1: log restricted-likelihood = -517.11175
Iteration 2: log restricted-likelihood = -517.11162
Iteration 3: log restricted-likelihood = -517.11162
Computing standard errors:
                                             Number of obs =
Number of groups =
Mixed-effects REML regression
                                                                      131
                                                                    1
Group variable: _all
                                             Obs per group: min =
                                                                       131
                                                           avg = 131.0
                                                            max =
                                                                     131
```

Log restricted	d-likelihood = -	517.11162	Wal Pro	d chi2(2) b > chi2	=	7.40 0.0247	
year6	Coef. S	td. Err.	z P>	z [95%	Conf. In	terval]	
prize gps _cons	1037621 . -1416.8 7 28.2954 6	0913582 - 89.9379 - .791852	-1.14 0.2 -1.79 0.0 4.17 0.0	56 2828 73 -2968 000 14.98	3209 . 5.05 1 3361 4	0752966 31.4495 1.60718	
Random-effec	cts Parameters	Estimate	e Std. Er	r. [95%	Conf. In	terval]	
all: Identity sd(000017	7 70000ID)(1)	6.37e-10) 2.26e-0	9 5.986	e-13 6	.78e-07	
	sd(Residual)	13.38502	.83656	11.8	4184 1	5.12931	
LR test vs. 1: (1)000017 . mat li e(b) e(b)[1,20]	inear regression _00001800001	: chibar2(01 90000IA _ c3	_) = 0. _0000IB	00 Prob >= 0 0000IC000	chibar2 = DOID	1.0000	
y1 16.61443 c y1 9.26446	7 13.590064 5 c7 72 10.19844	11.170396 c8 11.420449	9.5598933 c9 12.608274	8.957016 c10 13.52113	3		
cl. y13201610 c16 v1 0706448	c12 727469834 - c17 1149412 1	cl3 .19155654 c18 2509918 1	1022751 c19 0668906	.01623526 c20 07023563			
. drop gps	•1149412 •1	2309910 .1	0000000	.07023303			
 bootstrap ' yearm5 yearn tpoints(tp) link(log) n 	DRF agew ownh m6, outcome(year numoverlap(3) m xnots(7) det del	s owncoll ma 6) treatmen ethod(radial ta(1)" b, re	ale tixbot nt(prize) .pspline) f eps (50)	workthen yea gpscore(gps) amily(gauss)	arml year) test(L ian) //	m2 yearm _like) /	3 yearm4 // /
<pre>. command: DRI yearm5 yearm tpoints(tp) link(log) nl statistics: note: label tr Bootstrap stat</pre>	<pre>7 agew ownhs own a6, outcome (yea numoverlap(3) m cnots(7) det del b_c1 = b_c2 =b b_c3 =b b_c4 =b b_c5 =b b_c6 =b b_c6 =b b_c7 =b b_c7 =b b_c10 =b b_c11 =b b_c12 =b b_c13 =b b_c13 =b b_c14 =b b_c15 =b b_c15 =b b_c16 =b b_c17 =b b_c18 =b b_c19 =b b_c20 =b cuncated to 80 c cistics</pre>	<pre>coll male ti r6) treatmen ethod(radial ta(1) _b[c1] [c2] [c3] [c4] [c5] [c6] [c7] [c8] [c10] [c10] [c11] [c12] [c13] [c14] [c15] [c16] [c17] [c18] [c19] [c20] haracters</pre>	xbot workt ht(prize) c .pspline) f	hen yearm1 pscore(gps) amily(gauss) amily (gauss) dumber of obs eplications	<pre>yearm2 ye test(L_1 ian) // s = =</pre>	arm3 yea ike) // 191 50	rm4 //
 Variable	Reps Observe	d Bias	Std. Err.	[95% Conf.	Interval]	
b_c1 b_c2	30 16.6144 30 13.5900	4 -1.535679 6 -1.374677	4.242904	7.936724 1.348377 7.861991 3.013828 -9.351303 2.659373	25.2921 19.6880 19.6880 24.166 17.8381 17.8381	5 (N) 9 (P) 9 (BC) 3 (N) 4 (P) 4 (BC)	

b_c3	30	11.1704	-1.816147	6.801103	-2.739421 -18.86036	25.08021 18.12071	(N) (P)
					-1.620142	18.12071	(BC)
bc4	30	9.559894	-2.904836	8.931471	-8.707015	27.8268	(N)
_					-29.52042	19.27784	(P)
					-1.281503	19.27784	(BC)
b c5	30	8,957016	-4.620706	11,4736	-14.50914	32,42317	(N)
					-41.01822	19.24719	(P)
					-4.842792	19.24719	(BC)
b c6	30	9.264467	-6.942414	14.29988	-19.98207	38.51101	(N)
2_00		5.20110,	0.010111	11.20000	-51.39978	19,97105	(P)
					-9 806973	19 97105	(BC)
b c7	30	10 19844	-9 677037	17 31045	-25 20541	45 60229	(DO)
D_C /	50	10.10044	5.011051	11.01040	-59 86525	21 59847	(P)
					-13 77467	21.59847	(BC)
b c8	30	11 /20/5	-12 65516	20 592/1	-30 69575	53 53665	(DC) (N)
0 <u>0</u> _0	50	11.42045	-12.03310	20.39241	-60 31172	24 65030	(IN) (D)
					16 06157	24.03939	(F)
h al	20	10 60007	15 76126	21 10206	-10.00137	62 06779	
D_C9	30	12.0082/	-15./6136	24.18286	-30.83123	02.00778 06 0E420	(N) (D)
					-/9.0/030	20.03430	(PC)
h = 10	20	10 50110	10 001 00	07 070CF	-11.88224	20.83438	(BC)
010_0	30	13.52113	-18.89108	21.91965	-43.70369	/0./4595	(IN)
					-92.2/58/	28.01503	(P)
1 11		2001 (11		050000	-15./3032	28.01503	(BC)
p_cll	30	3201611	.0299988	.2533333	8382858	.19/963/	(N)
					-1.054751	.1862844	(P)
					6223834	.1862844	(BC)
b_c12	30	2746983	0115712	.2310252	7471979	.1978012	(N)
					-1.058791	.2192596	(P)
					5139831	.2192596	(BC)
b_c13	30	1915565	0866501	.2101515	6213645	.2382515	(N)
					8595198	.1877503	(P)
					3297973	.1877503	(BC)
b_c14	30	1022751	1510106	.2708593	6562446	.4516944	(N)
					-1.161376	.1373965	(P)
					3703439	.1373965	(BC)
b_c15	30	.0162353	2296974	.3323331	6634623	.6959328	(N)
					-1.170888	.2759393	(P)
					289534	.2759393	(BC)
b_c16	30	.0706448	2615911	.354923	6552542	.7965438	(N)
					-1.151995	.3282185	(P)
					2635896	.3282185	(BC)
b_c17	30	.1149412	2885368	.3644928	6305303	.8604127	(N)
					-1.185669	.3742993	(P)
					2724622	.3742993	(BC)
b_c18	30	.1250992	3070457	.3806217	6533597	.9035581	(N)
					-1.182581	.3550077	(P)
					2560649	.3550077	(BC)
b_c19	30	.1066891	313221	.3852914	6813202	.8946984	(N)
					-1.202775	.286127	(P)
					3090771	.286127	(BC)
b_c20	30	.0702356	3111099	.4012712	7504562	.8909275	(N)
					-1.487813	.2179427	(P)
					2892012	.2179427	(BC)
							. '

Note: N = normal P = percentile BC = bias-corrected

end of do-file

Figures 1 to 4 employ the point estimates from the DRF routine along with the standard errors from the bootstrap. As can be seen from the figures, the two penalized spline estimators and the IW kernel estimator lead to qualitatively similar results in this application. However, it is important to note how the point estimates of the three estimators tend to differ in our application as the treatment levels increase. This is because our

Figure 2: Estimated marginal treatment effect functions

data become scarcer as we move to higher values of the treatment.⁶ Given the nonparametric nature of the methods we employ, estimation becomes noisier and the parameters are estimated less precisely in regions of the data with few observations, which is also reflected in the wider confidence intervals. In particular, note that the radial spline approach seems to be more sensitive to the size of the sample employed, as its confidence bands are wider than those of the IW and penalized splines estimators (see Figure 3), especially for values of T_i greater than 40.

⁶In particular, we do not have many observations for very low or high values (> 40) of the treatment variable.

Figure 4: 95% Confidence Bands for the marginal treatment effect functions ^{I-Weighting Kernel Method} $\frac{1-Weighting Kernel Method}{1}$ $\frac{1-Weighting Kernel Method}{1}$ $\frac{1-Weighting$

References

- Bia M. and A. Mattei. Assessing the Effect of the Amount of Financial Aids to Piedmont Firms Using the Generalized Propensity Score. *Statistical Methods and Applications*, 21, 485–516, (2012).
- [2] Bia M. and P. Van Kerm. Space filling location selection with Stata. *CEPS/INSTEAD* working papers series, forthcoming, (2013).
- [3] Bia M. and A. Mattei. A Stata Package for the estimation of the doseâresponse function through adjustment for the generalized propensity score. *Stata Journal*, 8, 354–373, (2008).
- [4] Buis M. L. and N. Cox and S. P. Jenkins. **BETAFIT:** Stata module fit two-parameter distribution. to a beta http://EconPapers.repec.org/RePEc:boc:bocode:s435303, (2012).
- [5] Fan J. and I. Gijbels. Local Polynomial Modelling and its Applications. *Chapman and Hall, London*, (1996).
- [6] Flores C. A. and A. Flores-Lagunes and A. Gonzales and T. Neuman. Estimating the Effects of Length of Exposure to Instruction in a Training Program: The Case of Job Corps. *The Review of Economics and Statistics*, 94, 153–171, (2012).

- [7] Hirano K. and G. W. Imbens. The Propensity Score with Continuous Treatments. Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives, Andrew Gelman and Xiao-Li Meng (Eds.), 73-84, (2004).
- [8] Imai K. and D. A. Van Dyk. The Propensity Score with Continuous Treatments. *Causal treatment with general treatment regimes: Generalizing the Propensity Score*, 99, 854–866, (2004).
- [9] Imbens G. W. The role of the propensity score in estimating dose-response functions. *Biometrika*, 87, 706–710, (2000).
- [10] Imbens G. W. and D. B. Rubin and B. Sacerdote. Estimating the effect of unearned income on labor supply, earnings, savings and consumption: evidence from a survey of lottery players. *American Economic Review*, **91**, 778–794, (2001).
- [11] Kluve J. and H. Schneider and A. Uhlendorff and Z. Zhao. Evaluating continuous training programs using the Generalized Propensity Score. *Journal of the Royal Statistical Society, Series A*, **175**, 587–617, (2012).
- [12] Lechner M. Identification and estimation of causal effects of multiple treatments under the conditional independence assumption. *Econometric Evaluation of Labour Market Policies, Heidelberg: Physica, M. Lechner, F.Pfeiffer (Eds.)*, 43–58, (2001).
- [13] Newey. W. Kernel Estimation of Partial Means and a General Variance Estimator. *Econometric Theory*, 10, 233–253, (1994).
- [14] Rosenbaum P. R. and D. B. Rubin. The central role of the propensity score in observational studies for causal effects. *Biometrika*, 70, 41–55, (1983).
- [15] Rubin D. B. Estimating causal effects of treatments in randomized and nonrandomized studies. *Journal of Educational psychology*, **766**, 668–701, (1974).
- [16] Rubin D. B. Bayesian inference for causal effects: the role of randomization. *The Annals of Statistics*, 6, 34–58, (1978).
- [17] Rubin D. B. Bias reduction using Mahalanobis's metric matching. *Biometrics*, 36, 295–298, (1980).

- [18] Rubin D. B. Comment: Neyman (1923) and Causal Inference in Experiments and Observational Studies. *Statistical Science*, 5, 472–480, (1990).
- [19] Ruppert D. and M. Wand and R. Carroll. Semiparametric Regression. Cambridge University Press, Cambridge, UK, edition 1, (2003).

3, avenue de la Fonte L-4364 Esch-sur-Alzette Tél.: +352 58.58.55-801 www.ceps.lu